Decellularized bovine reinforced vessels for small-diameter tissue-engineered vascular grafts.
نویسندگان
چکیده
The aim of the present study was to investigate the influence of a decellularization protocol on the structure and the mechanical behavior of small-diameter (<6 mm) tibial calf arteries and veins. Calf vessels were decellularized by a detergent-enzymatic method (DEM), partially hydrolyzed with trypsin and subsequently cross-linked using poly(ethylene glycol) diglycidyl ether. Our results showed that i) the DEM can be considered a simple and valuable procedure for the preparation of complete acellular arteries and veins able to preserve a high degree of collagen and elastic fibers, and ii) poly(ethylene glycol) diglycidyl ether cross-linking treatment provides appropriate mechanical reinforcement of blood vessels. Histologically, the decellularized vessels were obtained employing the detergent-enzymatic procedure and their native extracellular matrix histoarchitecture and components remained well preserved. Moreover, the decellularization protocol can be considered an effective method to remove HLA class I antigen expression from small-diameter tibial calf arteries and veins. Cytocompatibility of decellularized cross-linked vessels was evaluated by endothelial and smooth muscle cell seeding on luminal and adventitial vessel surfaces, respectively.
منابع مشابه
Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells
BACKGROUND Tissue engineering has emerged as a promising alternative for small-diameter vascular grafts. The aim of this study was to determine the feasibility of using decellularized aortae of fetal pigs (DAFPs) to construct tissue-engineered, small-diameter vascular grafts and to test the performance and application of DAFPs as vascular tissue-engineered scaffolds in the canine arterial syste...
متن کاملTissue engineering of vascular grafts
Tissue engineering of vascular grafts 187 1 3 Summary Background There is a considerable clinical need for a sufficient prosthetic small-diameter substitute which can compete with autologous vessels. Currently used synthetic materials have a poor performance due to high thrombogeneicity and development of intimal hyperplasia. Tissue engineering is an interesting alternative approach for vascula...
متن کاملIn Vivo Remodeling of Fibroblast-Derived Vascular Scaffolds Implanted for 6 Months in Rats
There is a clinical need for tissue-engineered small-diameter (<6 mm) vascular grafts since clinical applications are halted by the limited suitability of autologous or synthetic grafts. This study uses the self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold (FDVS) that can be available off-the-shelf. Briefly, extracellular matrix scaffolds were produced usin...
متن کاملTissue Engineered Small Vessel Conduits – The Anti-Thrombotic Effect of Re-Endothelialization of Decellularized Baboon Arteries: A Preliminary Experimental Study
BACKGROUND The use of decellularized biological scaffolds for the reconstruction of small-diameter vascular grafts remains a challenge in tissue engineering. Thrombogenicity is an important cause of obstruction in these vessels due to decellularization. Seeding of the decellularized vascular constructs with endothelial cells is therefore a prerequisite for the prevention of thrombosis. The aim ...
متن کاملCovalent linkage of heparin provides a stable anti‐coagulation surface of decellularized porcine arteries
Establishing thrombosis-resistant surface is crucial to develop tissue-engineered small diameter vascular grafts for arterial reconstructive procedures. The objective of this study was to evaluate the stability and anti-coagulation properties of heparin covalently linked to decellularized porcine carotid arteries. Cellular components of porcine carotid arteries were completely removed with chem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 28 3 شماره
صفحات -
تاریخ انتشار 2011